
^ tech r.i.c.

AlllDS bSim^ NISTIR 5911

A Standardized Approach for

Transducer Interfacing:

Implementing IEEE-P1451
Smart Transducer Interface

Draft Standards

Kang B. Lee
Leader, Sensor Integration Group

Richard D. Schneeman
Computer Scientist

Sensor Integration Group

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Manufacturing Engineering Laboratory

Automated Production Technology Division

Gaithersburg, MD 20899

QC

100

.U56

NO. 5911

1996

NIST

t

NISTIR 5911

A Standardized Approach for

Transducer Interfacing:

Implementing IEEE-P1451
Smart Transducer Interface

Draft Standards
Kang B. Lee
Leader, Sensor Integration Group

kang.lee@nist.gov

Telephone: (301) 975-6604

Richard D. Schneeman
Computer Scientist

Sensor Integration Group

rschneeman@nist.gov

Telephone: (301) 975-4352

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Manufacturing Engineering Laboratory

Automated Production Technology Division

Gaithersburg, MD 20899

October 1996

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Gary R. Bachula, Acting Under Secretary

for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Director

Abstract

NIST researchers have developed a reference implementation and companion

demonstration for this currently defined set of specifications to provide a concrete

example of the IEEE P1451, Drafi; Standard for a Smart Transducer Interface for Sensors

and Actuators. The reference implementation includes both hardware and software

components that when integrated together yield an environment for illustrating complete

PI451 functional aspects and capabilities. This document briefly provides an overview of

both parts ofthe standard and more specifically how they relate to this demonstration. The

reference implementation approach used as well as resources required are also discussed

to familiarize the reader with the demonstration environment. Specific implementation

issues are then discussed concerning the several main areas of the software and hardware

components used in this implementation. The first software component, called

NCAPTool, written in C-H-, provides a graphical user interface (GUI) -based Windows
environment in which various functional aspects of the standards can be exercised. The

second component is a dynamic link library (DLL), also written in C++, that provides an

Application Programming Interface (API) to the P 145 1.1, Draft Standardfor a Network

Capable Application Processor (NCAP) Information Model. The third component

provides the hardware necessary to illustrate a tangible implementation of the P 145 1.2,

Draft Standard for a Transducer to Microprocessor Communication Protocols and
Transducer Electronic Data Sheet (TEDS) Formats. All three components together

illustrate the integration of both P1451.1 and P1451.2 as well as providing a visual

capability for demonstrating the standards’ key functional aspects.

Keywords; actuators, application programming interfaces, interoperability, graphical user

interface, network independent, portability, reference implementation, sensors, sensor

interface, transducers.

2

*

Table of Contents

1. INTRODUCTION 4

1.1 Transducer Device Overview 4

1 .2 What is a Smart Transducer? 5

1.3 Transducer Integration Problems 5

1.4 A Standards-based Solution 5

2. IEEE P1451 OVERVIEW 5

2.1 P1 451.1 - Information Model 6

2.1.1 Using Object-Oriented Design 7

2.1.2 Block Classes 7

2.1.3 Base Classes 8

2. 2 P1451.2 - Transducer to Microprocessor Interface 9

2.2.1 STIM 9

2.2.2 TEDS 9

2.2.3 Digital Interface 9

3. IMPLEMENTING THE OBJECT MODEL 10

3.1 Class Implementation io

3.2 A Library-based Implementation ii

4. P1451.2 HARDWARE RESOURCES 11

5. DEMONSTRATION ARCHITECTURE 11

5.1

System Configuration ii

5.1.1 Server Configuration 12

5.1.2 Client Configuration 13

6. DEMONSTRATING THE STANDARD 13

7. SUMMARY 14

8. REFERENCES 14

9. ACKNOWLEDGMENT 15

3

1. Introduction

Researchers at the National Institute of Standards and

Technology (NIST) have developed a Reference

Implementation of the proposed IEEE P1451 Draft

Standard for a Smart Transducer Interface for Sensors

and Actuators [1][2]. The standard defines a set of

specifications minimizing the hardware and software

problems associated with interfacing transducers to

multivendor networks, multistandard buses, and a variety

of microprocessor-based platforms. The set of

specifications addresses these concerns by focusing on

three key areas, including: (1) application-level portability

for transducer-based software, (2) network-independent

access for transducer-based applications, and (3)

transducer interoperability using a plug-and-play

approach to connecting trai^ducers to a microprocessor

platform and a network.

In order to highlight key aspects of the draft

specifications, a demonstration in the form of a reference

implementation was developed. The reference

implementation provides NIST researchers and interested

parties with:

• A standards-based software and hardware platform in

which to provide a venue for the demonstration.

• A concrete proof-of-concept implementation in which

to test the standards’ effectiveness, provide useful

feedback, and expedite the standards definition

process through experimentation.

• A usefiil graphical software tool to demonstrate the

standards by exercising key functional interfaces from

the specification.

Before we begin a detailed examination of the reference

implementation, we first need to frame our discussion

with a brief description of the relevant parts of a

networked transducer. In addition, the capabilities that

make a transducer device smart also need to be briefly

summarized.

1.1 Transducer Device Overview

A transducer is a device that converts energy firom one

domain into another. The resulting quantity is calibrated

to minimize errors during the conversion process. A
transducer is either a sensor (i.e., a device that senses

pressure or temperature) or an actuator (i.e., a controllable

device such as a valve or a relay). Figure 1 illustrates the

components found in a typical transducer connected to a

network.

Figure 1: A Typical Network Transducer.

In its most general form, a transducer physically

interfaces with an embedded microprocessor in order to

support some form of hardware input and ouq)ut channels

from the microprocessor to the transducer, as shown in

Figure 1. This interface provides a data path between the

microprocessor and the transducer.

In addition, note that in Figure 1 the interface from the

microprocessor to the network forms a communication

pathway to a networking substrate. This leads to the

definition of a networked transducer, which simply means

the transducer has the ability to provide calibrated data to

the network and the ability to respond to queries firom the

network.

Located onboard the microprocessor, shown in Figure 1, a

network-capable application typically executes a variety of

algorithms suited to the particular transducer’s

application domain, such as interacting with a pressure or

temperature sensor. In order to use the network

communication medium, an applicator must be aware of

and interact with the specific control network technology.

In addition, the application must also be capable of using

the transducer interface cormected to the control network

microprocessor to send and receive data to and from the

transducer. This in effect positions the application as a

laminated structure uniting both a network interface on

one side with a transducer interface on the other.

4

1.2 What is a Smart Transducer?

What additional features does a generic transducer device

have to exhibit for it to be considered smartl A smart

transducer needs to provide additional capabilities other

then merely the correct representation of a sensed or

controlled physical quantity. In relation to the standard’s

definition, as defined in the IEEE P1451 drafts, a

transducer is smart if it contains additional functionality

that simplifies the integration of the transducer into any

networked application environment Another smart

feature is the ability of self-identification of the

transducer to the system. This is accomplished by

providing the capability to embed key information about

the transducer and its performance in a standardized

format in a small amount of nonvolatile memory

associated with the transducer. At power up or query

fi-om the system the transducer can identify itself to the

host processor. This feature enables the automation of

diagnostic, configuration, and identification procedures

across a multivendor environment In fact, these and other

capability-based standardized features provide the generic

transducer with a smart moniker that cormotes greater

functionality, portability, and extensibility.

Standardization of these features increases

interoperability.

1.3 Transducer Interface Problems

One motivating reason for defining the interface standard

is current problems transducer manufacturers face when

integrating their devices into multivendor networks and

heterogeneous hardware environs. Because the network

and the transducer must expose their two interfaces

directly to the application, any attempt to migrate the

application to another platform is just cause for a

complete redesign ofthe application’s interface to the new
environment Transducer manufacturers and system

integrators currently struggle with these issues while

trying to manufacture and market sensors for cross-

industry application domains and multivendor networks.

The redesign process is time-consuming and expensive

leading to transducer products that take a longer time to

market with higher price tags. In addition, all prospects

for interoperable, plug-and-play sensors and actuator

devices are lost because of proprietary or unique

interfaces. Transducer manufacturers must now expend a

great deal of engineering effort to cover several control

network vendor technologies instead of designing the

device once for all networks that adhere to the

standardized interfaces.

The interface between the microprocessor and transducer

that presents many problems for transducer manufacturers

when they want to interfece their products with a

multitude of microprocessor buses. A different

hardware/software interfece must be designed for each bus

the vendor chooses to support
1.4

A Standards-based Solution

If a standardized approach to interfacing both the

application with the network and the microprocessor with

the transducer device is available, then companies can

leverage it to more effectively provide cross-industiy

support for their products while reducing the engineering

and time to market issues that currently plague

implementers. That is, through this standardized or

common interfece, the same transducers can be used on

multiple control networks, and the selection of a control

network for measurement, and control application is

totally firee of transducer compatibility constraints.

Moreover, expanding and crossing into different markets

increases competition while driving down prices.

Transducer application designers can focus more on

adding value to their applications without being

concerned about developing interfaces for every possible

network or microprocessor that their respective companies

decide to target. Increasing value-added featiues will lead

to more iimovative applications for end-users. More
importantly, the standardization process provides a level

playing field for development That is, smaller transducer

manufacturers could now enter markets whereas before

ordy companies commanding enough resources and

capital can afford to develop products across multiple

nonstandardized interfaces.

These issues have become the key motivation for forming

cross-industry based working groups to define a

networked smart transducer standard. In an attempt to

provide a concrete representation of the standard, a

reference implementation of the standard has been

developed and will be the focus of the discussion in the

next section.

2. IEEE P1451 Overview

Recognizing a need to remedy the transducer interfacmg

problems, the Committee on Sensor Technology of the

Instrumentation and Measurement Society of the Institute

of Electrical and Electronics Engineers (IEEE) has been

working on defining a standard for a Networked Smart

5

Transducer. The proposed IEEE P1451 is a two-part

standard that essentially combines a smart transducer

device Information Model targeting software-based,

network-independent, transducer application

environments (P1451.1) with a standardized digital

interface and communication protocols for accessing

transducer data from the transducer via the

microprocessor (P1451.2). Figure 2 shows the component

layout of the proposed interface for a P1451 Networked

Transducer.

Figure 2; A P1451 Networked Transducer.

Figure 3; A Standardized P1451 Smart Transducer.

Figure 3 illustrates the complete P1451 smart transducer

standards model comprising both the interfece to the

Information/Object Model along with the Transducer

Interface specification. Notice in Figure 3 where the

standardization process specifically address the transducer

industry’s two most problematic areas. These are the

definitions of a standardized digital interface between the

transducer and the microprocessor, as well as a

standardization of the apphcation elements that impact

network communication.

The P145 1.1 specification provides an abstract interface

description that ultimately will be transcribed into a

concrete application programming interface (API) when

developers implement the model. The fimctional API

interface of P1451.1 is used to demonstrate the reference

implementation and likewise requires greater coverage in

order to properly address the implementation. The

hardware resources used m this demonstration are based

completely on P1451.2; however, the specification

implementation is not discussed in detail. These two areas

of the standard will be fiuther discussed in the next

sections.

2.1 P1451.1 - Information Model

The proposed P145 1.1 Draft Standard, the Network

Capable Application Processor (NCAP) Information

Model, centers around the object-oriented definition of an

NCAP. The NCAP is the object-oriented embodiment of a

transducer device. This includes the definition of all

application-level access to network resources as well as

the framework for application access to transducer

hardware, as shown in Figme 3.

The complete definition and specification of the NCAP
constitutes the Information Model and is the basis for the

P1451.1 specification. The Information Model strives to

lay out a framework that abstracts the characteristics of a

networked Smart Transducer device using object-oriented

design techniques. In the standard, the object-based aspect

of the Information Model is referred to as the Smart

Transducer Object Model and is shown in the center of

the NCAP in Figure 3. The NCAP definition encompasses

a set of object classes, attributes, methods, and behaviors

that provide a concise description of a transducer and the

network to which it may connect. By modeling the

transducer device in object-oriented terms, an abstract

view of device characteristics can be coalesced into a

singular model. The model is sufficiently general to

encompass a wide variety of networked transducer

apphcation services. Moreover, the Object Model tackles

6

the two specific problem areas by standardizing on the

linkages ^tween how applications interact with physical

sensors and actuators in the system and how these same

applications interact with the attached networking

medium.

The Object Model provides standardized access for NCAP
applications to the network by defining a network-neutral

communication model for both intra- and inter-device

interaction. Standardized access to the physical transducer

is provided by a programmatic interface based on a device

driver interface model. In effect, the NCAP application is

laminated between two standardized device driver models

— one a network driver and the other a transducer

interface driver as shown in Figure 3. By adhering to both

models consistently, applications may be reused and

migrated to other networks without major reengmeering

effort Network and transducer vendors simply provide

these driver stubs to link with an NCAP to facilitate a

portable and interoperable, plug-and-play transducer

application environment The specifics of how the

standard addresses these issues will be discussed in the

next section.

2.1.1 Using Object-Oriented Design

The Object Model uses an object-oriented design

methodology for describing smart transducers. Therefore,

the major objective of the P1451.1 working group was to

define a class containment hierarchy that identified

specific classes, methods, attributes, and behaviors that

accurately define a networked smart transducer device

object Figure 4 illustrates the class containment used m
the draft that makes up the Smart Transducer device.

The P1451.1 draft models the capabilities of a network

capable transducer using file familiar rack or card-cage

paradigm used to describe plug-m I/O cards in a personal

computer (PC). That is, a PC consists of a backplane or

bus where special I/O cards representing specific

functionality can be plugged in. The cards are represented

in the model by blocks. The blocks are essentially block

classes and represent the highest form of functionality in

the model. The standard uses the card-cage model to

describe the transducer device. It uses two types of classes

to construct these cards between most notably Base and

Block classes.

Figure 4: The P1451.1 Containment Hierarchy.

The classes defined by P1451.1 consists of four Block

classes: one Physical Block, and one or more Transducer

Blocks, Function Blocks, and Network Blocks. Notice how
each Block class may include specific Base classes firom

the model. The Base classes include Parameters, Actions,

Events, and Files, and provide component class. It is

important to note that the details of the P1451.1

specification reflect Version 1.75 of the Draft Standard,

and may change in later version. Each of these will be

briefly discussed.

All classes in the model have an abstract or root class

firom which they are derived. This abstract class includes

several attributes and methods that are common to all

classes in the model. This provides a central class

definition to be used for instantiation and deletion. In

addition, methods for getting and setting attributes within

each class are also provided.

2.1.2 Block Classes

Block classes form the major blocks of functionality that

can be plugged into the card-cage to create various types

of devices. One Physical Block is mandatory as it defines

the card-cage and abstracts the hardware and software

resources that are used by the device. All other blocks and

component Base classes can be referenced from the

Physical Block.

A Physical Block represents the card-cage and contains

all the logical hardware and software resources in the

model. These resources determine the basic characteristics

of the device being assembled. Information contained in

the Physical Block as attributes include the

7

manufacturer’s identiJBcation, serial number, hardware

and software revision information, and more importantly,

data structures that provide a repository for other class

components. As previously mentioned, the Physical Block

is the logical container for all components in the device

model; therefore, it must have access to and be able to

locate all available resomces instantiated by the device.

The data structures provided by the Physical Block house

pointers (Instance lD) to these components thereby

providing easy indirect access to them. In order for the

Physical Block to resolve address queries from the

network (i.e., a remote NCAP requests an attribute from

the Physical Block), a hierarchical addressing scheme

based on imique Tags (ASCII descriptions of the block or

component name) that can be concatenated together to

form fully qualified addresses is used to communicate

with the device or device object across the network. The

Physical Block is the centralized logical coimector or

backplane that the other Block classes plug into.

Therefore, for the Physical Block to find other

components in the system it must provide a Locate

method.

The Transducer Block abstracts all the capabilities of each

transducer that is physically connected to the NCAP I/O

system. That is, during the device configuration phase, the

TEDS information from the hardware device is read. This

information describes what kind of sensors and actuators

are coimected to the system. This information is used by

the physical block to create and configure the necessary

type of transducer block.

The transducer block includes an I/O device driver style

interface for communication with the hardware. The I/O

interface includes methods for reading and writing to the

transducer from the application-based function block

using a standardized interface (i.e., io read and io write).

The I/O device driver paradigm provides both plug-and-

play capability and hot-swap feature for transducers. This

means any application written to this interface should

work interchangeably with multiple vendor transducers.

In a similar fashion the transducer vendors provide an I/O

driver to the network vendors with their product that

supports this interface. The driver is integrated with the

transducer’s application environment to provide access to

their hardware. This approach is identical to the loctl

interface foimd in device drivers for mainstream operating

systems such as MS-DOS and UNIX.

The Function Block provides a transducer device with a

skeletal area in which to place application-specific code.

The interface does not place any restrictions on how an

application is developed. In addition to a State variable

(which all block classes maintain), the Function Block

contains several lists ofParameters that typically are used

to access network-visible data or to make internal data

available remotely. That is, any application-specific

algorithms or data structures are contained within these

blocks to separately allow for integration of application-

specific functionality using a portable approach.

The Network Block is used to abstract all access to the

network by the Block and Base classes using a network-

neutral, object-based programming interfece. The network

model provides an application interaction mechanism

based on the familiar remote procedure call (RPC)

paradigm foimd in today’s client-server distributed

computing settings[3]. The RPC mechanism supports both

a client-server and a publisher-subscriber paradigm for

event and message generation. In support of the two types

of application interaction, a communication model that

centers around the notion of a port is defined in the

specification. This means, if a block wishes to

communicate with any other block in the device or across

the network, it must first create a port that logically binds

the block to the port name. Once enough information

about the addressing of the port is known, the port can be

bound to a network-specific block address. At this point

the logical port address has been bound to the actual

destination address by the underlying control network

technology. Any transducer application’s use of the port

name is now resolved to the endpoint associated with the

logical destination. This allows a late binding effect on

application uses of the ports so that addresses are not

hard-coded or dependent upon a specific architecture. The

port capability is similar to the TCP/IP application-level

socket programming interface where a socket is created

and bound using the TCP/IP specific tuple: port niunber

and Internet address in dotted notation. Once bound, the

socket can be used for message and data transfer.

2.1 .3 Base Classes

Base classes represent the basic building blocks used by

the block classes. They are generally used within block

classes to provide application functionality. The base

classes include: Actions, Events, Parameters, and Files.

Actions provide a model for control interactions between

the various block classes that define a system. Essentially,

all actions are called using an Invoke method and may be

either blocking or nonblocking in their communication of

the action.

Events model the generation of asynchronous

communication of signals in the system. That is, if an

8

application wishes to have a certain occurrence of

something to happen at a given time in the system, then

the designer simply creates an event with a certain time

period. The imderlying event generation and control

mechanisms provided by the network will be used to

support this capability.

The Parameter class represents network-visible variables

in the model. Parameters have two methods associated

with this class for reading and writing to these network

accessible data storage locations. Parameters are typically

found in the Function blocks to give access to network

variables to executing apphcations.

Files provide a means for applications to up and download

information to the device. The kinds of transfers of

information are not specified nor are the structure of the

data. Either stream or record-oriented data streams are

used. A minimal file transfer state machine is defined in

the specification.

This ends the brief discussion on the P1451.1

specification. The P145 1.1 draft implemented for the

demonstration results in a suite of software that represents

the concrete reference implementation. Other parts of the

demonstration require hardware resources and the

implementation of the PI45 1.2 protocol specification. The

hardware portion of the standard will be briefly discussed

in the next section to provide the reader with some

background information. The implementation as it relates

to the demonstration will be discussed later in the

demonstration architecture area.

2.2 P1451.2 - Transducer to Microprocessor

Interface

The P145 1.2 draft specification, the Transducer to

Microprocessor Communication Protocols and

Transducer Electronic Data Sheet (TEDS) Formats,

provides a standardized digital interfiice and

commurtication protocol that directly addresses the

problem of interfacing multiple connection schemes with

different buses and microprocessors. In addition, the

standard includes the definition of a smart transducer

interface module (STIM) and a transducer electronic data

sheet (TEDS).

2.2.1

STIM

A STIM consists of a transducer, signal conditioning and

conversion circuitry, a TEDS, and necessary logic circuit

to implement the P1451.2 9-wire digital interface and

protocols to communicate with a NCAP. A single

transducer or up to 255 transducers can be supported by a

STIM Each transducer in a STIM is defined as a

channel. A multichannel STIM is one that contains

multiple transducers and thus form a multivariable STIM;

for example, a temperatme sensor, pressure sensor, and

air flow sensor combined together to form a mass-flow

sensor.

2.2.2 TEDS

A TEDS is a scaleable and extensible electronic data

sheet that allows transducer manufacturers to bum in

specific fields about their product such as manufacture

date, version ioformation, and calibration specifics, etc.,

into a small nonvolatile memory associated with the

transducer hardware. The TEDS structure is divided into

Meta-TEDS, Channel TEDS, Calibration TEDS,
Application-specific TEDS, and Extension TEDS. Meta-

TEDS contains the TEDS data field that is common to all

transducers cormected to the STIM. The field contains

information such as overall description of the TEDS data

structure, worst case STIM timing parameters, etc.

Charmel TEDS contains information for one specific

transducer in a STIM Each transducer has its associated

Charmel TEDS containing information such as physical

units, uncertainty, upper/lower range limits, warm-up

time, etc.

The Calibration TEDS contains valuable information such

as calibration parameters, and calibration interval. The

Application-specific TEDS are for appUcation specific use

by end-users, while Extension TEDS is reserved for

implementing future and industry extension to P145 1.2.

The TEDS information provides a self-identification

capability for transducers that is invaluable for

maintenance, diagnostics, and determining mean-time-

before-failure characteristics. This capability has

generated a great deal of enthusiasm and is considered to

be a potential boon to the sensor manufacturing industry.

2.2.3 Digital Interface

Communications between the SUM and NCAP are

defined by a 9-wire physical specification and a set of

protocol to access the TEDS information, read sensors,

and set actuators. The data transfers are based on SPI-like

(serial peripheral interface), bit-transfer protocol. The

NCAP usually initiates a measurement or action by means

of triggering the STIM, and the STIM responds with an

acknowledgment once the requested function is

completed. The STIM can interrupt the NCAP if an

exception such as a hardware error, calibration failure, or

self-test failure occmred.

9

3. Implementing the Object Model

The P1451.1 Object Model represents an abstract, object-

oriented model for describing a network-capable

transducer device, and is a good method for capturing the

design requirements for such a device. However, in order

to realize a reference implementation in software, the

P1451.1 specification must first be transcribed from an

abstract interface definition into an application

programming interface based on a conventional

programming language. Because the P145 1.1 Object

Model was defined using an object-oriented methodology,

using C-H- as the object-oriented language enviromnent

become a natural choice to map the model. The next

section revisits each block class and briefly describes how
they are implemented during migration firom abstract

interface definition to concrete reference implementation.

3.1 Class Implementation

The majority of the software development effort involving

the reference implementation was spent on constructing

and integrating the P145 1.1 Object Model. This effort

concentrated on implementing a C-h- framework to

support the Block and Base classes firom the P145 1.1

specification. The software necessary to realize an

implementation of the P1451.1 classes will be discussed

below in greater detail. The class implementation

includes:

• The Physical Block provides a central hub for

resources in the NCAP. In order to provide this

capability certain implementation aspects have been

derived. Namely, using the list attributes defined in

the specification, a data structure can be built to

house the pointers to the various components in the

system. A Locate method is provided that parses the

string addressing information to determine what

pointer in the data structure needs to be de-

referenced.

• The Network Block provides aU the underlying

network support needed by the transducer device. In

order to support the networking aspects of the

P145 1.1 Draft, we needed to implement the network-

neutral parts of the specification using a specific

networking technology. Instead of using a vendor-

specific control networking technology, we wanted to

implement the network protocol using the ubiquitous

TCP/IP protocol bundled with the Windows

95•

operating system. Specifically, the application-level

implementation of the TCP/IP protocol suite firom

Microsoft— called WinSock Version 2.0. Therefore

any P1451.1 API method or function call that

requires the services of an imderlying control network

(i.e., SendRequest), would now use an equivalent

application-level TCP/IP based function or macro to

emulate those requests for services (i.e., send).

TCP/IP was chosen because of its ubiquity,

availability, and the developers familiarity with

integrating it into the application environment

Before a block could communicate a request using the

SendRequest API however, a port structure needed to

be created and connected. The port capability was

implemented using the socket API of TCP/IP.

Clearly, m a real implementation of the standard

however, ports represent a slightly lower-level of

integration then do sockets in the parlance of TCP/IP.

That is, whenever a block wants to communicate with

another block, a new socket-like endpoint would not

be created. Moreover, in this implementation, one

socket is created using TCP/IP and every port

structure created would simply use the singular socket

coimection to send its information. A socket for each

port creation would be too much overhead on the

operating system. Therefore the receiver of the

message fi^om the block in the TCP/IP

implementation simply determines what port the

message came from and redirects the message to the

specific block. This method is more consistent with

how current control network vendors would provide

their implementations, i.e., using a pseudo interrupt-

driven scheme for message arrival and dehvery.

• The Function Block contains aU vestiges of the

user’s custom transducer application environment.

The fimction block with its defined attributes provides

a skeletal envelope in which to package a user

application. The function block uses the parameters it

defined to communicate network variable

information. In this implementation, the function

block is rather generic in that it does not support a

great deal of custom functionality. It merely sets up

parameters to read the transducer information when
called upon by a query process firom across the

network. In addition, the fimction block contains an

event that can be initiated to simulate the event-based

communication of reading sensor data firom the

NCAP. All these capabilities are set up in a rather

sterile fashion so that the software tool developed for

the demonstration can trigger or query the function

block for the desired results.

• The Transducer Block provides the capability for the

application to interact directly with the transducer

interface using a device driver interface paradigm. As

10

;
;

'

'../M
‘v;

;;,.:..o 'V' '"'
i -

'a:...

/''V
'

[.ii- ;

'-u..
',

,

n.'

/'','’')V:

V.'J

previously mentioned, in order for the transducer

device to communicate with the application in a

standardized fashion, an I/O driver interface must be

used. In the implementation, the driver interface has

been setup to be a simplistic subset of the complete

specification. This was a reasonable approach as all

the demonstration required was the ability to read

both the TEDS information and actual sensor

readings from the transducer device. Therefore, the

only method from the abstract interface definition

given by the standard that was need by the

implementation was by the io_read method. We have

not yet implemented the capability to write actuator

data because we did not utilize any physical actuators

in the demonstration system. Likewise, we have not

yet implemented the capability to write information to

the TEDS fields.

3.2 A Library-based Implementation

The P1451.1 portion of the reference implementation was

developed as a C-h- dynamic link library (DLL). A
dynamic link library contains executable images of

fimction calls that an application will call and use. When
an application calls a method or fimction contained in a

dynamically linked library, the library that contains the

image of the target fimction must be found by the

Windows operating system and brought into main

memory. Once this process has completed, the actual

fimction executes and proceeds as if the called function

were statically linked with the application’s image.

Clearly, this process occurs rapidly and provides an

efficient means for managing reusable code and memory
space within the operating system. The dynamic link

library implementing all the P1451.1 NCAP fimctionality

provides a convenient and centralized area for defining
the fimctional interface definition of the specification.

Applications that require NCAP-based services simply

link with the DLL to access all the standardized methods

defined in the P1451.1 specification.

The integration of the class software provides the

reference implementation with the capability to support

and interact with NCAP-based transducer applications. In

order to utilize the software to retrieve and interact with

actual sensors in the system, however, several hardware

components representing the P145 1.2 draft standard are

needed. The next section provides a brief introduction to

the hardware pieces used and how they were integrated in

the reference implementation.

4. P1451.2 Hardware Resources

The hardware that was needed to demonstrate the P145 1.2

digital interface between microprocessor and transducer

included an actual pressure sensor input to the

demonstration. In addition, the pressure sensor contains

an on-board TEDS description to allow up and

downloading of these fields. The hardware component of

this demonstration illustrates how sensor/actuator

manufacturers would use the P1451.2 standard to provide

portable, plug-and-play, interoperable products for the

process control industry as an example.

The hardware area as specified in P145 1.2 has been

encapsulated in this demonstration by using the parallel

port in a PC cormected to the pressure sensor through the

9-wire interface. The parallel port was used as it provides

easy access to the software/hardware enviromnent and it

lends itself to easy integration into the PC envirorunent - a

major concern for us when developing this scenario.

5. Demonstration Architecture

In order to demonstrate the capabilities of the P1451

standard as proposed, it became necessary to pull all the

software and hardware pieces together to form the

reference implementation. The reference implementation

provide the means to demonstrate the capabilities of the

standard in an interesting venue.

This demonstration uses a software tool in a way that will

exercise both aspects of the P1451 standard reference

implementation. The tool uses the P145 1.1 fimctional API

to configure and query a remote NCAP over the network.

As part of the configuration process, the hardware

interface defined by the P1451.2 specification is implicitly

used and exercised as well. A closer look at the system

pieces that make up the demonstration are discussed next

5.1 System Configuration

Figure 5 illustrates a high-level view of the architectural

components needed to demonstrate the reference

implementation. Two notebook computers form a small

sub-network consisting of two nodes. The notebook

computers, each simulating NCAP, coimects to the

network via an internal PCMCIA Ethernet interface card.

Both notebooks run the Microsoft Windows 95 operating

system and are configured to use the TCP/IP protocol

stack (WinSock V2.0) that comes bundled with the

system.

11

The physical network consists of an Ethernet-based,

10 Mbps, lOBaseT twisted-pair network. For compactness

and demonstrative purposes, each node is connected

directly to a pocket-sized 4-port lOBaseT Ethernet hub.

This device provides the physical backbone network

needed for the demonstration.

Essentially, the two notebooks form a client-server

relationship over the network in order to demonstrate the

standard. That is, one notebook (shown in Figure 5 as the

Apphcation PC) executes a client software apphcation

tool called NCAPTool.

Figure 5: NIST Demonstration Architecture.

This software tool drives the demonstration by exercising

the API associated with P1451.1 to query a server process

executing on the remote NCAP-based notebook (shown in

Figure 5 as the NCAP PC). The query process results in

message-based method invocations sent firom the client to

the server API calls in this demonstration. All messages

and invocations utilize the P1451.1 standard interface

exclusively. All results firom the server sent back to the

client are packaged and received in a standardized form as

well. Therefore, all interactions between the client and the

server are carried out using the standardized interfaces

defined by P1451.1, providing a complete standards-based

environment for NCAP interactions.

5.1.1 Server Configuration

The server-based NCAP-PC is a fully functional PC-based

version of a standard P1451 smart networked transducer

device. Physically, the only difference between the PC

implementation and an embedded application is that one

has been targeted to the PC environment for

demonstration purposes.

The software portion of the NCAP-PC implements the

P145 1.1 Information Model. The core software

component found in both notebooks is comprised of the

C-H- DLL that implements the P1451.1 standard;

however, the way in which the standard API and

subsequent DLL interface are used varies between the

Application-PC and NCAP-PC. For instance, using

NCAPTool, the Application-PC only uses the standard

P1451.1 network block interface API to configure and

exercise the remote NCAP-PC for demonstrative

pmposes. Because the Application-PC does not have any

associated transducer hardware, it does not require any

P1451.2 standard capabilities. It merely uses the

standardized functional interface provided by the P1451.1

based C-h- DLL to access and manipulate the remote

NCAP-PC capabilities. In fact, many test and diagnostic

tools on the control networking market today use this style

of interaction where the specific API of the vendor

network is used as the PC-based entry point to access and

manage remote node hardware and software via the

network during configuration.

In theory, the C-H- DLL developed for the NCAP-PC
could be cross-compiled target to an embedded

microprocessor environment “as is”. The imderlying

TCP/IP networking code used to implement the network

block would of course need to be rewritten to conform to

the new target control network.

The hardware portion of the server-based NCAP-PC
implements a fuUy compliant P1451.2 hardware interface

that connects a pressure transducer to the demonstration

^stem. Figure 6 illustrates a close-up view of the parallel

port hardware connection that provides a means for

physically connecting the PUS 1.2 9-wire interface to the

parallel port.

Notice the use of the parallel port device on NCAP-PC.
The parallel port provides a reasonable way to

demonstrate a PC-based implementation of the 9-wire

digital interface proposed in P1451.2. The P1451.2

compatible pressure sensor was built and provided by SSI

Technologies. The sensor’s 9-wire interface is terminated

with a DB-9 connector. The DB-9 connector was then

mated with a 25- pin parallel port cable and plugged into

the printer port of the notebook computer. A special

device driver was developed that would translate the

application request for hardware service into standard API

calls using the Transducer Block ofP145 1.1.

12

This special parallel port driver was needed to supplant

the original printer port device driver in order to provide

the software linkage to all P145 1.1 compliant transducer

block API calls boimd for the pressure sensor. The driver

then translates any P1451.1 transducer block API method

(i.e., a function call such as io_read that actually reads the

sensor data) into its compatible 9-wire signaling protocol

as defined in the P1451.2 digital interface specification.

The firmware implementation of the digital interface

would then interact with the pressure sensor hardware to

request the data; ultimately sending the data back to the

transducer block where the request originated.

Figure 6: Parallel Port Interface Implementation.

This transducer interface was completely built conforming

to the P145 1.2 interface specification. A specially

developed parallel-port device driver was used to create

the PC-based platform firom which the application of the

standard could be tested. This provide both accessability

and ease of use.

The SSI Technologies’ pressure sensor is the key

hardware component illustrated in this demonstration.

Having the hardware located on NCAP-PC, combined

with the ability to access the data from it remotely,

illustrates the powerful accessibility options fi-om both

standards. NCAP-PC implements the full P1451 standard

providing intra- as well as inter-NCAP access to its object

attributes, embedded TEDS information, and sensor data.

5.1.2 Client Configuration

The client configuration does not require all the services

of P1451.1 to operate. However, we used the same DLL
based on the C++ implementation of the P1451.1

specification that the server application uses. This was

possible, because all that we needed from the DLL was the

class definition for the network block. To drive the

NCAP-PC demonstration, we developed a Windows 95-

based configuration tool to interact with an NCAP across

the network using the portable application and network-

capable framework of P1451.1. The graphical user

interface based diagnostic tool we developed, called

NCAPTool, was compiled and linked with the P1451.1-

based DLL to provide a visual front-end into the

standardized NCAP methods or function calls.

The NCAPTool application links with the C++ DLL to

supply a class instantiation of the network block. As part

of the NCAPTool initialization, a network block class is

instantiated or created. From this point on all queries

made to the remote NCAP-PC using the tool would be

facilitated through the network block ofNCAPTool. When
the server process executes, one of its functions is to wait

or listen to incoming cormections (using the parlance of

TCP/IP). When a cormection occurs (the client is trying to

communicate) a duplex transport connect is then

established between the client and server. Queries and

other requests then use the channel that has just been

established. All TCP/IP functions have been embedded

into the network block to envelope the associated API.

This facilitates network-neutral control network

technology.

6. Demonstrating the Standard

A useful question one might ask at this point is, “what

elements from the P1451 draft standard can be shown and

how can they be demonstrated using this reference

implementation?” To answer this question we need to

focus on the capabilities of a Windows 95-based client

NCAPTool application we developed for this purpose.

Using NCAPTool, a user can configure, diagnose,

exercise, and contrpl a remote device on the network by

interactively issuing API-based methods defined by the

P1451.1 Draft. The tool allows the operator to access

specific object attributes, read sensor data fi’om the device,

and retrieve the TEDS’s manufacturing and calibration

data from across a network protocol based on TCP/IP.

Specifically, the tool demonstrates how the standard may
be used in a diagnostic setting to illustrate several key

13

I

ideas firom both parts of the P145 1 standard; including the

ability to:

• provide standardized read and write access to the

smart transducer device over a network,

• exercise the digital communication protocol and

hardware interface to access the sensor data and

TEDS information from the transducer device

remotely,

• illustrate the logical block addressing scheme to

access object attributes, and finally,

• demonstrate the network-neutral API for sending and

receiving information over the network.

In general, the software tool accomplishes these tasks by

allowing the operator of the NCAPTool to enter specific

query instructions using text boxes, pull-down menus and

individual windows. For instance, an operator may enter a

request for a serial number or software revision number

on the remote NCAP-PC. Alternately, an operator may
issue read requests on the remote NCAP-PC to obtain the

sensor data directly from the transducer. In addition, the

TEDS information may be retrieved from the remote

NCAP. Object addressing and block interactions are also

demonstrated using individual windows with specific

menus for requesting the information. A graphical

window can be popped up which shows a dial gauge of the

pressure sensor updated with the current pressure in real-

time dli^trating events and data transfer over the network

directly from the remote NCAP-PC.

It becomes ea^ to envision how such a tool might be used

remotely over the Internet to help a technician retrieve

information about a particular sensor. That being said, we
chose the diagnostic and monitoring venue because it is

familiar to most network vendors, system integrators,

sensor manufacturers, and users.

7. Summary

Currently transducer manufacturers, system integrators,

network vendors, and users are faced an enormous

problem of trying to support multivendor networks and

bridge the smart transducer market across industries. In

order to motivate the necessity of the IEEE P1451

standards effort, the relevant problems have been

presented here in detail. The solutions to these problems

have also been addressed by the two-part P1451 draft

standard, A Smart Transducer Interface for Sensors and

Actuators. To illustrate the salient features of these draft

specifications in a demonstration setting, a reference

implementation has been developed by NIST researchers.

The reference implementation represents a concrete

example of the Information Model from P1451.1 as well

as the digital hardware interface implementation from

P1451.2.

To exercise various features from the standard, a software

tool called NCAPTool was developed to provide visual

interaction so that a user can query the NCAP for specific

standardized information. This information includes

object attributes, TEDS information, and sensor data from

the transducer.

In an effort to illustrate the integration of the P1451.1 and

P1451.2 draft standard implementation, a P145 1.2-

compatible pressure sensor is interfaced to the P1451.2

reference implementation through a parallel port. The

software tool combines all the key features of the IEEE

P1451 Draft Standard to provide a demonstration of its

most pragmatic elements.

8. References

[1] IEEEP1451.1, Draft Standardfor a Smart Transducer

Interface for Sensors and Actuators— Network Capable

Application Processor (NCAP) Information Model.

Institute of Electrical and Electronics Engineers, Inc.,

New York, to be submitted, 1996.

[2] IEEE PI451.2, Draft Standardfor a Smart Transducer

Interface for Sensors and Actuators — Transducer to

Microprocessor Communication Protocols and

Transducer Electronic Data Sheet (TEDS) Formats.

Institute of Electrical and Electronics Engineers, Inc.,

New York, August 1996.

[3] Birrel, D. A., Nelson, B. J., Implementing Remote

Procedure Calls, ACM Transactions on Computer

Systems, Vol. 2, No. 1, February 1984, Pages 39-59.

14

9. Acknowledgment

During the development and integration of the reference

implementation, several companies and individuals were

very helpful in bringing this demonstration to fruition.

A special thanks to Stan Woods and Alec Dara-Abrams of

Hewlett-Packard who have been instrumental in providing

the special parallel port driver for use in the

implementation.

SSI Technologies supplied much of the hardware both in

emulation form and actual hardware implementations of

the P1451.2 draft standard. The hardware provided by SSI

was instrumental in developing the interfacing between

the transducer block and the hardware I/O driver

software.

We would especially like to thank the reviewers of this

document for their advice and encouragement during this

manuscript development process.

*** Certain commercial products are identified in this

paper in order to adequately describe the proposed

standard. Such identification does not imply

recommendation or endorsement by the National Institute

of Standards and Technology, nor does it imply that the

products identified are necessarily the best available for

the purpose or the only ones that could be used.

